Search results for " Turing instability"

showing 4 items of 4 documents

Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth

2015

We focus on the morphochemical reaction–diffusion model introduced in Bozzini et al. (2013) and carry out a nonlinear bifurcation analysis with the aim to characterize the shape and the amplitude of the patterns arising as the result of Turing instability of the physically relevant equilibrium. We perform a weakly nonlinear multiple scales analysis, and derive the normal form equations governing the amplitude of the patterns. These amplitude equations allow us to construct relevant solutions of the model equations and reveal the presence of multiple branches of stable solutions arising as the result of subcritical bifurcations. Hysteretic type phenomena are highlighted also through numerica…

WavefrontReaction–diffusionTuring instabilityMorphochemical electrodeposition Reaction–diffusion Pattern formation Turing instability Bifurcation analysisPattern formationComputational mathematicsMorphochemical electrodepositionNonlinear systemComputational MathematicsAmplitudeComputational Theory and MathematicsBifurcation analysisBifurcation analysiComputational Theory and MathematicModeling and SimulationReaction–diffusion systemPattern formationStatistical physicsReaction-diffusionFocus (optics)Envelope (mathematics)AlgorithmSettore MAT/07 - Fisica MatematicaMathematics
researchProduct

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

2016

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

PhysicsSteady stateApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPattern formationSettore MAT/01 - Logica Matematica01 natural sciences010305 fluids & plasmasNonlinear systemActivator-inhibitor kinetics Cross-diffusion Turing instability Amplitude equationsAmplitude0103 physical sciencesReaction–diffusion systemStatistical physics0101 mathematicsConstant (mathematics)Settore MAT/07 - Fisica MatematicaTuringcomputercomputer.programming_languageRicerche di Matematica
researchProduct

Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model

2022

<p style='text-indent:20px;'>We investigate the formation of stationary patterns in the FitzHugh-Nagumo reaction-diffusion system with linear cross-diffusion terms. We focus our analysis on the effects of cross-diffusion on the Turing mechanism. Linear stability analysis indicates that positive values of the inhibitor cross-diffusion enlarge the region in the parameter space where a Turing instability is excited. A sufficiently large cross-diffusion coefficient of the inhibitor removes the requirement imposed by the classical Turing mechanism that the inhibitor must diffuse faster than the activator. In an extended region of the parameter space a new phenomenon occurs, namely the exis…

Cross-diffusion FitzHugh-Nagumo Turing instability out-of-phase patterns amplitude equationsApplied MathematicsDiscrete Mathematics and CombinatoricsSettore MAT/07 - Fisica MatematicaDiscrete and Continuous Dynamical Systems - B
researchProduct

Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion

2014

In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel---Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator's one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we c…

Hopf bifurcationWork (thermodynamics)Partial differential equationApplied MathematicsMathematical analysisPattern formationInstabilityNonlinear diffusion Activator–inhibitor kinetics Turing instability Hopf bifurcation Amplitude equationsymbols.namesakeAmplitudesymbolsDiffusion (business)Settore MAT/07 - Fisica MatematicaTuringcomputerMathematicscomputer.programming_languageActa Applicandae Mathematicae
researchProduct